Redundancy of primary RNA-binding functions of the bacterial transcription terminator Rho
نویسندگان
چکیده
The bacterial transcription terminator, Rho, terminates transcription at half of the operons. According to the classical model derived from in vitro assays on a few terminators, Rho is recruited to the transcription elongation complex (EC) by recognizing specific sites (rut) on the nascent RNA. Here, we explored the mode of in vivo recruitment process of Rho. We show that sequence specific recognition of the rut site, in majority of the Rho-dependent terminators, can be compromised to a great extent without seriously affecting the genome-wide termination function as well as the viability of Escherichia coli. These terminators function optimally only through a NusG-assisted recruitment and activation of Rho. Our data also indicate that at these terminators, Rho-EC-bound NusG interaction facilitates the isomerization of Rho into a translocase-competent form by stabilizing the interactions of mRNA with the secondary RNA binding site, thereby overcoming the defects of the primary RNA binding functions.
منابع مشابه
The Sm-like RNA chaperone Hfq mediates transcription antitermination at Rho-dependent terminators.
In Escherichia coli, the essential motor protein Rho promotes transcription termination in a tightly controlled manner that is not fully understood. Here, we show that the general post-transcriptional regulatory protein Hfq associates with Rho to regulate Rho function. The Hfq:Rho complex can be further stabilized by RNA bridging both factors in a configuration that inhibits the ATP hydrolysis ...
متن کاملThe structural basis for terminator recognition by the Rho transcription termination factor.
The E. coli Rho protein disengages newly transcribed RNA from its DNA template, helping terminate certain transcripts. We have determined the X-ray crystal structure of the RNA-binding domain of Rho complexed to an RNA ligand. Filters that screen both ligand size and chemical functionality line the primary nucleic acid-binding site, imparting sequence specificity to a generic single-stranded nu...
متن کاملA multipronged strategy of an anti-terminator protein to overcome Rho-dependent transcription termination
One of the important role of Rho-dependent transcription termination in bacteria is to prevent gene expressions from the bacteriophage DNA. The transcription anti-termination systems of the lambdoid phages have been designed to overcome this Rho action. The anti-terminator protein N has three interacting regions, which interact with the mRNA, with the NusA and with the RNA polymerase. Here, we ...
متن کاملStructure of rho factor: an RNA-binding domain and a separate region with strong similarity to proven ATP-binding domains.
The domain structure of rho protein, a transcription termination factor of Escherichia coli, was analyzed by oligonucleotide site-directed mutagenesis and chemical modification methods. The single cysteine at position 202, previously thought to be essential for rho function, was changed to serine or to glycine with no detectable effects on the protein's hexameric structure, RNA-binding ability,...
متن کاملNoncanonical interactions in the management of RNA structural blocks by the transcription termination rho helicase.
To trigger transcription termination, the ring-shaped RNA-DNA helicase Rho from Escherichia coli chases the RNA polymerase along the nascent transcript, starting from a single-stranded C-rich Rut (Rho utilization) loading site. In some instances, a small hairpin structure divides harmlessly the C-rich loading region into two smaller Rut subsites, best exemplified by the tR1 terminator from phag...
متن کامل